IES Practice Guide (May 2012): Improving Mathematical Problem Solving in Grades 4 Through 8

Recommendation 1. Prepare problems and use them in whole-class instruction.

1. Include both routine and non-routine problems in problem-solving activities.

2. Ensure that students will understand the problem by addressing issues students might encounter with the problem’s context or language.

3. Consider students’ knowledge of mathematical content when planning lessons.

Recommendation 2. Assist students in monitoring and reflecting on the problem-solving process.

1. Provide students with a list of prompts to help them monitor and reflect during the problem-solving process.

2. Model how to monitor and reflect on the problem-solving process.

3. Use student thinking about a problem to develop students’ ability to monitor and reflect.

Recommendation 3. Teach students how to use visual representations.

1. Select visual representations that are appropriate for students and the problems they are solving.

 __

 __

2. Use think-alouds and discussions to teach students how to represent problems visually.

 __

 __

3. Show students how to convert the visually represented information into mathematical notation.

 __

 __

Recommendation 4. Expose students to multiple problem-solving strategies.

1. Provide instruction in multiple strategies.

 __

 __

2. Provide opportunities for students to compare multiple strategies in worked examples.

 __

 __

3. Ask students to generate and share multiple strategies for solving a problem.

 __

 __

Recommendation 5. Help students recognize and articulate mathematical concepts and notation.

1. Describe relevant mathematical concepts and notation, and relate them to the problem-solving activity.

 __

 __

2. Ask students to explain each step used to solve a problem in a worked example.

 __
3. Help students make sense of algebraic notation.

Five Strands of Mathematical Proficiency (NRC, 2002)

1. **Understanding:** Comprehending mathematical concepts, operations, and relations—knowing what mathematical symbols, diagrams, and procedures mean. [Conceptual Knowledge]

2. **Computing:** Carrying out mathematical procedures, such as adding, subtracting, multiplying, and dividing numbers flexibly, accurately, efficiently, and appropriately. [Procedural Knowledge]

3. **Applying:** Being able to formulate problems mathematically and to devise strategies for solving them using concepts and procedures appropriately. [Metacognition]

4. **Reasoning:** Using logic to explain and justify a solution to a problem or to extend from something known to something less known. [Synthesis]

5. **Engaging:** Seeing mathematics as sensible, useful, and doable—if you work at it—and being willing to do the work. [Motivation/Self-Efficacy]

Reference

How Do We Reach Low-Performing Math Students?: Instructional Recommendations

Important elements of math instruction for low-performing students (Baker, Gersten, & Lee, 2002; p. 51):

<table>
<thead>
<tr>
<th>IDEAS FOR IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providing teachers and students with data on student performance</td>
</tr>
<tr>
<td>Using peers as tutors or instructional guides</td>
</tr>
<tr>
<td>Providing clear, specific feedback to parents on their children’s mathematics success</td>
</tr>
<tr>
<td>Using principles of explicit instruction in teaching math concepts and procedures.</td>
</tr>
</tbody>
</table>

Reference

Worksheet: Identifying a Student Academic Problem

1. **Describe the problem.** Think of a student currently or previously in your class whose academic problem(s) require significant amounts of your time, energy, and support. In 1-2 sentences, briefly describe the nature of that student's academic problem(s).

 Description of student academic problem(s)

2. **Write a 3-part Problem-Identification Statement.** Use this organizer to rewrite your student's academic problem in the form of a 3-part Problem ID statement. For examples, see pp. 5-6 of handout:

 3-Part Academic Problem ID Statement
<table>
<thead>
<tr>
<th>Environmental Conditions or Task Demands</th>
<th>Problem Description</th>
<th>Typical or Expected Level of Performance</th>
</tr>
</thead>
</table>

3. **Write a Hypothesis Statement.** Based on your knowledge of this student, write a 'hypothesis' statement that pinpoints the likely 'root cause' of the academic problem. See the next page for a listing of possible hypotheses.

 Hypothesis Statement
The Math-Challenged Student: Profile

Use this list of common challenges of students who struggle with mathematics to identify specific obstacles faced by learners in your classroom.

<table>
<thead>
<tr>
<th>Area of Math Challenge: The student…</th>
<th>Strategies to Address Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. has problems with short-term memory.</td>
<td></td>
</tr>
<tr>
<td>2. has difficulty understanding math concepts/abstractions.</td>
<td></td>
</tr>
<tr>
<td>3. possesses a limited attention span (difficulty remaining on-task).</td>
<td></td>
</tr>
<tr>
<td>4. has difficulty with spatial awareness.</td>
<td></td>
</tr>
<tr>
<td>5. fails to apply previously learned knowledge.</td>
<td></td>
</tr>
<tr>
<td>6. is unable to apply math concepts/reasoning to real-life situations.</td>
<td></td>
</tr>
<tr>
<td>7. struggles with visual sequencing—the ability to see objects in a sequential order (e.g., copying from the board, sequencing numbers, etc.)</td>
<td></td>
</tr>
<tr>
<td>8. confuses various math signs and symbols.</td>
<td></td>
</tr>
<tr>
<td>9. has deficits in math-related vocabulary.</td>
<td></td>
</tr>
<tr>
<td>10. has limited reading skills.</td>
<td></td>
</tr>
<tr>
<td>11. has difficulty following directions.</td>
<td></td>
</tr>
<tr>
<td>12. easily becomes overwhelmed with new learning</td>
<td></td>
</tr>
</tbody>
</table>

Reference