Math Interventions. What are practical math interventions to support struggling learners?
Five Strands of Mathematical Proficiency (NRC, 2002)

1. **Understanding**: Comprehending mathematical concepts, operations, and relations—knowing what mathematical symbols, diagrams, and procedures mean.

2. **Computing**: Carrying out mathematical procedures, such as adding, subtracting, multiplying, and dividing numbers flexibly, accurately, efficiently, and appropriately.

3. **Applying**: Being able to formulate problems mathematically and to devise strategies for solving them using concepts and procedures appropriately.

4. **Reasoning**: Using logic to explain and justify a solution to a problem or to extend from something known to something less known.

5. **Engaging**: Seeing mathematics as sensible, useful, and doable—if you work at it—and being willing to do the work.

Students with Math Learning Disabilities: The Numbers

- It is estimated that students with “learning disabilities (LD) and deficits in mathematics competencies” range from 5% to 7% of the school-age population. (Gersten et al., p. 1202)

National Assessment of Educational Progress: Mathematics: 2011 Student Sample: 26,200

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>% / Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficient</td>
<td>Represents “solid academic performance for each grade assessed. Students reaching this level have demonstrated competency over challenging subject matter, including subject-matter knowledge, application of such knowledge to real-world situations, and analytical skills appropriate to the subject matter.”</td>
<td>35%</td>
</tr>
<tr>
<td>Basic</td>
<td>Denotes “partial mastery of prerequisite knowledge and skills that are fundamental for proficient work at each grade assessed.”</td>
<td>38%</td>
</tr>
<tr>
<td>Below Basic</td>
<td>Falls below basic (as defined above)</td>
<td>27%</td>
</tr>
</tbody>
</table>

- “Teachers' regular use of formative assessments can improve student learning in mathematics.”

- “Instructional practice should be informed by high-quality research, when available, and by the best professional judgment and experience of accomplished classroom teachers.”

- “The belief that children of particular ages cannot learn certain content because they are “too young” or “not ready” has consistently been shown to be false.”

- “Explicit instruction for students who struggle with math is effective in increasing student learning.”

- “Teachers should understand how to provide clear models for solving a problem type using an array of examples, offer opportunities for extensive practice, encourage students to “think aloud,” and give specific feedback.”

What Works Clearinghouse Practice Guide: Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools

http://ies.ed.gov/ncee/wwc/

This publication provides 8 recommendations for effective core instruction in mathematics for K-8.
Recommendation 1. Screen all students to identify those at risk for potential mathematics difficulties and provide interventions to students identified as at risk.

Recommendation 2. Instructional materials for students receiving interventions should focus intensely on in-depth treatment of whole numbers in kindergarten through grade 5 and on rational numbers in grades 4 through 8.
Recommendation 3. Instruction during the intervention should be explicit and systematic. This includes providing models of proficient problem solving, verbalization of thought processes, guided practice, corrective feedback, and frequent cumulative review.

Recommendation 4. Interventions should include instruction on solving word problems that is based on common underlying structures.
Assisting Students Struggling with Mathematics: RtI for Elementary & Middle Schools: 8 Recommendations (Cont.)

Recommendation 5. Intervention materials should include opportunities for students to work with visual representations of mathematical ideas and interventionists should be proficient in the use of visual representations of mathematical ideas.

Recommendation 6. Interventions at all grade levels should devote about 10 minutes in each session to building fluent retrieval of basic arithmetic facts.
Assisting Students Struggling with Mathematics: RtI for Elementary & Middle Schools: 8 Recommendations (Cont.)

• **Recommendation 7.** Progress should be monitored for students receiving supplemental instruction/intervention and other students who are at risk.

• **Recommendation 8.** Tier 2/3 math interventions should include motivational strategies to energize and engage reluctant learners.
How Do We Reach Low-Performing Math Students?: Instructional Recommendations

Important elements of math instruction for low-performing students:

– “Providing teachers and students with data on student performance”

– “Using peers as tutors or instructional guides”

– “Providing clear, specific feedback to parents on their children’s mathematics success”

– “Using principles of explicit instruction in teaching math concepts and procedures.” p. 51

Math Interventions:

- Incremental Rehearsal
- Cover-Copy-Compare:
 - Math Facts
- Peer Tutoring in Math
 - Computation With
 - Constant Time Delay
- Customized Math Self-
 - Correction Checklists
The Importance of Math-Fact Mastery

• Math-fact mastery permits students to shift valuable cognitive capacity away from simple calculations toward higher-level problem-solving (Gersten, Jordan, & Flojo, 2005; National Mathematics Advisory Panel, 2008).

• An important goal for schools is to ensure that students are proficient in math-facts by the end of grade 5 (Kroesbergen & Van Luit, 2003) to better prepare them for the demanding middle-school math curriculum.
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 1: The tutor writes down on a series of index cards the math facts that the student needs to learn. The problems are written without the answers.

<table>
<thead>
<tr>
<th>4 x 5</th>
<th>2 x 6</th>
<th>5 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 2</td>
<td>3 x 8</td>
<td>5 x 3</td>
</tr>
<tr>
<td>6 x 5</td>
<td>9 x 2</td>
<td>3 x 6</td>
</tr>
<tr>
<td>8 x 2</td>
<td>4 x 7</td>
<td>8 x 4</td>
</tr>
<tr>
<td>9 x 7</td>
<td>7 x 6</td>
<td>3 x 5</td>
</tr>
</tbody>
</table>
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 2: The tutor reviews the ‘math fact’ cards with the student. Any card that the student can answer within 2 seconds is sorted into the ‘KNOWN’ pile. Any card that the student cannot answer within two seconds—or answers incorrectly—is sorted into the ‘UNKNOWN’ pile.

<table>
<thead>
<tr>
<th>‘KNOWN’ Facts</th>
<th>‘UNKNOWN’ Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 5 = ___</td>
<td>2 x 6 = ___</td>
</tr>
<tr>
<td>3 x 2 = ___</td>
<td>5 x 3 = ___</td>
</tr>
<tr>
<td>3 x 6 = ___</td>
<td>8 x 4 = ___</td>
</tr>
<tr>
<td>6 x 5 = ___</td>
<td>4 x 7 = ___</td>
</tr>
<tr>
<td>9 x 7 = ___</td>
<td>7 x 6 = ___</td>
</tr>
<tr>
<td>3 x 8 = ___</td>
<td>9 x 2 = ___</td>
</tr>
<tr>
<td>5 x 5 = ___</td>
<td>8 x 2 = ___</td>
</tr>
<tr>
<td>3 x 5 = ___</td>
<td></td>
</tr>
</tbody>
</table>
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 3: The tutor is now ready to follow a nine-step incremental-rehearsal sequence: First, the tutor presents the student with a single index card containing an ‘unknown’ math fact. The tutor reads the problem aloud, gives the answer, then prompts the student to read off the same unknown problem and provide the correct answer.

\[3 \times 8 = \text{__} \]
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 3: Next the tutor takes a math fact from the ‘known’ pile and pairs it with the unknown problem. When shown each of the two problems, the student is asked to read off the problem and answer it.

\[
\begin{align*}
3 \times 8 &= __ \\
4 \times 5 &= __
\end{align*}
\]
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 3: The tutor then repeats the sequence—adding yet another known problem to the growing deck of index cards being reviewed and each time prompting the student to answer the whole series of math facts—until the review deck contains a total of one ‘unknown’ math fact and nine ‘known’ math facts.

\[
\begin{align*}
3 \times 8 &= __ \quad 4 \times 5 &= __ \quad 2 \times 6 &= __ \\
3 \times 2 &= __ \quad 3 \times 6 &= __ \quad 5 \times 3 &= __ \\
8 \times 4 &= __ \quad 6 \times 5 &= __ \quad 4 \times 7 &= __
\end{align*}
\]
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 4: At this point, the last ‘known’ math fact that had been added to the student’s review deck is discarded (placed back into the original pile of ‘known’ problems) and the previously ‘unknown’ math fact is now treated as the first ‘known’ math fact in new student review deck for future drills.

\[
\begin{align*}
3 \times 8 &= _ _ \\
4 \times 5 &= _ _ \\
2 \times 6 &= _ _ \\
3 \times 2 &= _ _ \\
3 \times 6 &= _ _ \\
5 \times 3 &= _ _ \\
8 \times 4 &= _ _ \\
6 \times 5 &= _ _ \\
4 \times 7 &= _ _ \\
\end{align*}
\]
Math Review: Incremental Rehearsal of ‘Math Facts’

Step 4: The student is then presented with a new ‘unknown’ math fact to answer—and the review sequence is once again repeated each time until the ‘unknown’ math fact is grouped with nine ‘known’ math facts—and on and on. Daily review sessions are discontinued either when time runs out or when the student answers an ‘unknown’ math fact incorrectly three times.

\[
\begin{align*}
9 \times 2 &= _ \\
3 \times 8 &= _ \\
4 \times 5 &= _ \\
2 \times 6 &= _ \\
3 \times 2 &= _ \\
3 \times 6 &= _ \\
5 \times 3 &= _ \\
8 \times 4 &= _ \\
6 \times 5 &= _
\end{align*}
\]
Cover-Copy-Compare: Math Facts

In this intervention to promote acquisition of math facts, the student is given a sheet with the math facts with answers. The student looks at each math model, covers the model briefly and copies it from memory, then compares the copied version to the original correct model (Skinner, McLaughlin & Logan, 1997).
Cover-Copy-Compare Math Fact Student Worksheet

<table>
<thead>
<tr>
<th>Math Facts</th>
<th>Student Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 \times 7 = 63</td>
<td>9 \times 7 = 63</td>
</tr>
<tr>
<td>9 \times 2 = 18</td>
<td>2a.</td>
</tr>
<tr>
<td>9 \times 4 = 36</td>
<td>3a.</td>
</tr>
<tr>
<td>9 \times 1 = 9</td>
<td>4a.</td>
</tr>
<tr>
<td>9 \times 9 = 81</td>
<td>5a.</td>
</tr>
<tr>
<td>9 \times 6 = 54</td>
<td>6a.</td>
</tr>
<tr>
<td>9 \times 3 = 27</td>
<td>7a.</td>
</tr>
<tr>
<td>9 \times 5 = 45</td>
<td>8a.</td>
</tr>
<tr>
<td>9 \times 10 = 90</td>
<td>9a.</td>
</tr>
<tr>
<td>9 \times 8 = 72</td>
<td>10a.</td>
</tr>
</tbody>
</table>
Peer Tutoring in Math
Computation with Constant Time Delay
Peer Tutoring in Math Computation with Constant Time Delay

• **DESCRIPTION:** This intervention employs students as reciprocal peer tutors to target acquisition of basic math facts (math computation) using constant time delay (Mennesses & Gresham, 2009; Telecsan, Slaton, & Stevens, 1999). Each tutoring ‘session’ is brief and includes its own progress-monitoring component—making this a convenient and time-efficient math intervention for busy classrooms.
Peer Tutoring in Math Computation with Constant Time Delay

MATERIALS:

Student Packet: A work folder is created for each tutor pair. The folder contains:

- 10 math fact cards with equations written on the front and correct answer appearing on the back. NOTE: The set of cards is replenished and updated regularly as tutoring pairs master their math facts.
- Progress-monitoring form for each student.
- Pencils.
Peer Tutoring in Math Computation with Constant Time Delay

PREPARATION: To prepare for the tutoring program, the teacher selects students to participate and trains them to serve as tutors.

Select Student Participants. Students being considered for the reciprocal peer tutor program should at minimum meet these criteria (Telecsan, Slaton, & Stevens, 1999, Menesses & Gresham, 2009):

- Is able and willing to follow directions;
- Shows generally appropriate classroom behavior;
- Can attend to a lesson or learning activity for at least 20 minutes.
Peer Tutoring in Math Computation with Constant Time Delay

Select Student Participants (Cont.). Students being considered for the reciprocal peer tutor program should at minimum meet these criteria (Telecsan, Slaton, & Stevens, 1999, Menesses & Gresham, 2009):

- Is able to name all numbers from 0 to 18 (if tutoring in addition or subtraction math facts) and name all numbers from 0 to 81 (if tutoring in multiplication or division math facts).

- Can correctly read aloud a sampling of 10 math-facts (equation plus answer) that will be used in the tutoring sessions. (NOTE: The student does not need to have memorized or otherwise mastered these math facts to participate—just be able to read them aloud from cards without errors).

- [To document a deficit in math computation] When given a two-minute math computation probe to complete independently, computes fewer than 20 correct digits (Grades 1-3) or fewer than 40 correct digits (Grades 4 and up) (Deno & Mirkin, 1977).
Peer Tutoring in Math Computation: Teacher Nomination Form

Reciprocal Peer Tutoring in Math Computation: Teacher Nomination Form

Teacher: ___________________________ Classroom: ___________________________ Date: __________

Directions: Select students in your class that you believe would benefit from participation in a peer tutoring program to boost math computation skills. Write the names of your student nominees in the space provided below. Remember, students who are considered for the peer tutoring program should—at minimum—meet these criteria:

- Show generally appropriate classroom behaviors and follow directions.

- Can pay attention to a lesson or learning activity for at least 20 minutes.

- Are able to wait appropriately to hear the correct answer from the tutor if the student does not know the answer.

- Can name all numbers from 0 to 18 (if tutoring in addition or subtraction math facts) and name all numbers from 0 to 81 (if tutoring in multiplication or division math facts).

- Can correctly read aloud a sampling of 10 math facts (equation plus answer) that will be used in the tutoring sessions. (NOTE: The student does not need to have memorized or otherwise mastered these math facts to participate—just be able to read them aloud from cards without errors).

<table>
<thead>
<tr>
<th>Number</th>
<th>Student Name</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Peer Tutoring in Math Computation with Constant Time Delay

Tutoring Activity. Each tutoring ‘session’ last for 3 minutes. The tutor:

- **Presents Cards.** The tutor presents each card to the tutee for 3 seconds.

- **Provides Tutor Feedback.** [When the tutee responds correctly] The tutor acknowledges the correct answer and presents the next card. [When the tutee does not respond within 3 seconds or responds incorrectly] The tutor states the correct answer and has the tutee repeat the correct answer. The tutor then presents the next card.

- **Provides Praise.** The tutor praises the tutee immediately following correct answers.

- **Shuffles Cards.** When the tutor and tutee have reviewed all of the math-fact carts, the tutor shuffles them before again presenting cards.
Peer Tutoring in Math Computation with Constant Time Delay

Progress-Monitoring Activity. The tutor concludes each 3-minute tutoring session by assessing the number of math facts mastered by the tutee. The tutor follows this sequence:

- *Presents Cards.* The tutor presents each card to the tutee for 3 seconds.
- *Remains Silent.* The tutor does not provide performance feedback or praise to the tutee, or otherwise talk during the assessment phase.
- *Sorts Cards.* Based on the tutee’s responses, the tutor sorts the math-fact cards into ‘correct’ and ‘incorrect’ piles.
- *Counts Cards and Records Totals.* The tutor counts the number of cards in the ‘correct’ and ‘incorrect’ piles and records the totals on the tutee’s progress-monitoring chart.
Peer Tutoring in Math Computation: Score Sheet
Peer Tutoring in Math Computation with Constant Time Delay

Tutoring Integrity Checks. As the student pairs complete the tutoring activities, the supervising adult monitors the integrity with which the intervention is carried out. At the conclusion of the tutoring session, the adult gives feedback to the student pairs, praising successful implementation and providing corrective feedback to students as needed. NOTE: Teachers can use the attached form *Peer Tutoring in Math Computation with Constant Time Delay: Integrity Checklist* to conduct integrity checks of the intervention and student progress-monitoring components of the math peer tutoring.
Peer Tutoring in Math Computation: Intervention Integrity Sheet: (Part 1: Tutoring Activity)

Peer Tutoring in Math Computation with Constant Time Delay: Integrity Checklist

Tutoring Session: Intervention Phase

Directions: Observe the tutor and tutee for a full intervention session. Use this checklist to record whether each of the key steps of the intervention were correctly followed.

<table>
<thead>
<tr>
<th>Correctly Carried Out?</th>
<th>Step</th>
<th>Tutor Action</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y _N</td>
<td>1.</td>
<td>Promptly Initiates Session. At the start of the timer, the tutor immediately presents the first math-fact card.</td>
<td></td>
</tr>
<tr>
<td>Y _N</td>
<td>2.</td>
<td>Presents Cards. The tutor presents each card to the tutee for 3 seconds.</td>
<td></td>
</tr>
<tr>
<td>Y _N</td>
<td>3.</td>
<td>Provides Tutor Feedback. [When the tutee responds correctly] The tutor acknowledges the correct answer and presents the next card. [When the tutee does not respond within 3 seconds or responds incorrectly] The tutor states the correct answer and has the tutee repeat the correct answer. The tutor then presents the next card.</td>
<td></td>
</tr>
<tr>
<td>Y _N</td>
<td>4.</td>
<td>Provides Praise. The tutor praises the tutee immediately following correct answers.</td>
<td></td>
</tr>
<tr>
<td>Y _N</td>
<td>5.</td>
<td>Shuffles Cards. When the tutor and tutee have reviewed all of the math-fact cards, the tutor shuffles them before again presenting cards.</td>
<td></td>
</tr>
<tr>
<td>Y _N</td>
<td>6.</td>
<td>Continues to the Timer. The tutor continues to present math-fact cards for tutee response until the timer rings.</td>
<td></td>
</tr>
</tbody>
</table>
Peer Tutoring in Math Computation: Intervention Integrity Sheet (Part 2: Progress-Monitoring)

<table>
<thead>
<tr>
<th>Correctly Carried Out?</th>
<th>Step</th>
<th>Tutor Action</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>__ Y __ N</td>
<td>1.</td>
<td>Presents Cards. The tutor presents each card to the tutee for 3 seconds.</td>
<td></td>
</tr>
<tr>
<td>__ Y __ N</td>
<td>2.</td>
<td>Remains Silent. The tutor does not provide performance feedback or praise to the tutee, or otherwise talk during the assessment phase.</td>
<td></td>
</tr>
<tr>
<td>__ Y __ N</td>
<td>3.</td>
<td>Sorts Cards. The tutor sorts cards into 'correct' and 'incorrect' piles based on the tutee's responses.</td>
<td></td>
</tr>
<tr>
<td>__ Y __ N</td>
<td>4.</td>
<td>Counts Cards and Records Totals. The tutor counts the number of cards in the 'correct' and 'incorrect' piles and records the totals on the tutee's progress-monitoring chart.</td>
<td></td>
</tr>
</tbody>
</table>
Student Self-Monitoring: Customized Math Self-Correction Checklists

DESCRIPTION: The teacher analyzes a particular student's pattern of errors commonly made when solving a math algorithm (on either computation or word problems) and develops a brief error self-correction checklist unique to that student. The student then uses this checklist to self-monitor—and when necessary correct—his or her performance on math worksheets before turning them in.

Profile of Students With Significant Math Difficulties

Spatial organization. The student commits errors such as misaligning numbers in columns in a multiplication problem or confusing directionality in a subtraction problem (and subtracting the original number—the minuend—from the figure to be subtracted, the subtrahend).

Visual detail. The student misreads a mathematical sign or leaves out a decimal or dollar sign in the answer.

Procedural errors. The student skips or adds a step in a computation sequence. Or the student misapplies a learned rule from one arithmetic procedure when completing another, different arithmetic procedure.

Inability to ‘shift psychological set’. The student does not shift from one operation type (e.g., addition) to another (e.g., multiplication) when warranted.

Graphomotor. The student’s poor handwriting can cause him or her to misread handwritten numbers, leading to errors in computation.

Memory. The student fails to remember a specific math fact needed to solve a problem. (The student may KNOW the math fact but not be able to recall it at ‘point of performance’.)

Judgment and reasoning. The student comes up with solutions to problems that are clearly unreasonable. However, the student is not able adequately to evaluate those responses to gauge whether they actually make sense in context.

Sample Self-Correction Checklist

Math Self-Correction Checklist

<table>
<thead>
<tr>
<th></th>
<th>Problem#1</th>
<th>Problem#2</th>
<th>Problem#3</th>
<th>Problem#4</th>
<th>Problem#5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlined all numbers at the top of the subtraction problem that were smaller than their matching numbers at the bottom of the problem.</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
</tr>
<tr>
<td>Did the student succeed in this behavior goal?</td>
<td>[] YES [] NO</td>
</tr>
<tr>
<td>Wrote all numbers carefully so that I could read them easily and not mistake them for other numbers.</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
</tr>
<tr>
<td>Did the student succeed in this behavior goal?</td>
<td>[] YES [] NO</td>
</tr>
<tr>
<td>Lined up all numbers in the right place-value columns.</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
</tr>
<tr>
<td>Did the student succeed in this behavior goal?</td>
<td>[] YES [] NO</td>
</tr>
<tr>
<td>Rechecked all of my answers.</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
<td>Y N</td>
</tr>
<tr>
<td>Did the student succeed in this behavior goal?</td>
<td>[] YES [] NO</td>
</tr>
</tbody>
</table>
Math Interventions: Activity

• Review the sample math interventions just presented.

• Discuss how you might use any of these strategies in your classroom or school.

Math Interventions:

1. Incremental Rehearsal

2. Cover-Copy-Compare: Math Facts

3. Peer Tutoring in Math Computation With Constant Time Delay

4. Customized Math Self-Correction Checklists