How To: Use Rubrics in Student Assessment

When a teacher attempts to judge whether a student has attained a particular Common Core State Standard, the instructor must evaluate some aspect of that student's performance. Such a performance may be observed directly or in the indirect form of work products or other artifacts. Some types of schoolwork easily lend themselves to a simple quantitative scoring approach: for example, a solution to a math computation problem is either correct ('1') or incorrect ('0'). Many types of academic performance, however, are more complex and require that the student master several domains that in sum create a quality product. A research paper, for example, can be judged of high quality only if the writer shows skill in such dimensions as word choice, organization, selection and summary of sources, and use of the writing-revising process—among others.

Rubrics are a useful classroom method for evaluating complex, multi-dimensional tasks. In education, a widely used type of rubric is the analytic rubric (Moskal, 2000). To develop an analytic rubric, the teacher first describes the global performance task to be assessed. The teacher then defines the categories that make up the important dimensions of that task, develops exemplars representing mastery for each dimension, and creates a rating scale to be used in evaluating a particular student's work for each dimension (Schafer, Swanson, Bene', & Newberry, 2001).

Rubrics share similarities with checklists as observational instruments to measure academic performance. A checklist, though, is optimal for binary 'yes/no' situations when the instructor is simply confirming that an element of student performance or work product is either adequate or inadequate—e.g., the student's essay includes a title page/ contains at least 5 paragraphs/ includes 4 research sources. A rubric is the measure of choice when a dimension of academic performance can vary widely in quality from student to student—e.g., the organization of an essay or evidence of preparation for an oral presentation (Allen, 2004).

Rubrics have a number of advantages as a classroom assessment tool (Allen, 2004). They allow teachers to develop objective and consistent scoring criteria for complex student tasks, thus speeding assessment and improving the reliability of the evaluation. Rubrics can also provide clear guidance of work-expectations before the student begins the academic task, potentially eliminating confusion and increasing student self-confidence and motivation. Using a rubric, students can also evaluate their own work, helping them to internalize high standards of excellence and boosting motivation further via immediate performance feedback. As mentioned earlier, rubrics are also criterion-referenced: they set an absolute standard against which all students are to be assessed. In light of the fact that many schools have adopted the expectation that all learners will attain the Common Core State Standards, rubrics are a helpful classroom tool to evaluate on an ongoing basis whether specific students are on track to attain these ambitious learning goals.

Creating a Rubric in 4 Steps. Here are the steps to constructing a teacher-made analytic rubric (Allen, 2004; Moskal, 2000):

1. **Describe the task.** The teacher describes the academic performance task to be evaluated using the rubric. Examples might include an argumentative essay, oral presentation, participation in a discussion group, or conducting and documenting an in-class science experiment. The task description is a straightforward account of what the student is to do (and what product is to be created) but does not include quality indicators. NOTE: The Common Core State Standards contain summaries of academic expectations in English Language Arts and Mathematics tasks that can readily be turned into grade-appropriate rubric task descriptions.
2. **Define the dimensions that make up the task.** Next, the important component elements that make up the academic performance task are defined. This step is similar to a task analysis; the teacher lists the important component dimensions that are to be evaluated. For example, a teacher who wants to create a rubric to evaluate short research papers (task) may decide to divide the global writing task into 4 key dimensions: Word Choice, Details, Revision Process, and Use of Sources.

3. **Develop a rating scale.** The teacher develops a 3-5 level rating scale to evaluate student performance on each of the previously defined dimensions of the rubric. The teacher also devises a plain-English labeling system for the levels: e.g. "Needs work/competent/exemplary"; "Accomplished/average/developing/beginning".

 As an option, teachers can include point amounts or point ranges to accompany the rating scale. For example, an instructor may create a rating scale like the following: "Proficient (7-9 pts)/Intermediate (4-6 pts)/Beginning (1-3 pts)" In this rating scheme, each qualitative label is tied to a point range, allowing the instructor discretion regarding the number of points that can be awarded for each dimension.

4. **Provide descriptions of each dimension.** The teacher writes objective descriptions of student performance on each dimension that match the levels of the rating scale.

 A rubric for short research papers, for example, includes the dimension Word Choice. The teacher adopts a 3-level rating scale: 'Exemplary', 'Competent', and 'Needs Work'. At the high end of the scale, under 'Exemplary', the teacher describes Word Choice performance as: *The essay uses precise language throughout in descriptions and the presentation of ideas. It employs domain-specific vocabulary in most or all instances where appropriate.* In contrast, the same teacher describes Word Choice performance at the low end of the scale under 'Needs Work' as: *The essay uses general or vague language in descriptions and the presentation of ideas. It seldom or never employs examples of domain-specific vocabulary.*

Rubric Example: Student Discussion Group. A teacher is interested in assessing students' attainment of the Common Core ELA Speaking and Listening Standard for Grade 5 (CCSSELA.5.SL.1), which outlines expectations for participation in discussion groups. Using this Standard as a starting point, the teacher creates the following analytic rubric with a 3-item scale:

<table>
<thead>
<tr>
<th>Analytic Rubric: 'Student Discussion Group' Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task: The student will take part in weekly in-class collaborative peer discussions of assigned readings, contributing ideas and responding appropriately to the ideas of others (from CCSSELA.5.SL.1).</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Compliance With Discussion Rules/Roles</td>
</tr>
<tr>
<td>Contribution to Discussion</td>
</tr>
</tbody>
</table>

Rubrics: Additional Considerations. When developing and using rubrics for student assessment, teachers should keep these additional considerations in mind:

1. **Combine rubrics with quantitative academic information.** When feasible, consider pairing rubrics with quantitative data to have a more complete picture of academic performance. For example, a teacher working with a reluctant writer develops a rubric to track improvements in the quality of written expression. In addition, though, the instructor charts the word-count for each essay, with the goal of encouraging the student to write longer compositions.

2. **When using rubrics, ignore the curve.** Traditionally in schools, teachers have often graded on a curve, that is, they have plotted the range of student grade outcomes along a normal curve and awarded only a relative handful of high grades. Rubrics, however, do not fit on a curve, as they are a version of criterion-referenced performance goals that include clear, observable definitions of 'mastery' (Schafer, Swanson, Bene', & Newberry, 2001). It is possible, in fact highly desirable, that most or all students in a class might attain rubric ratings in the 'acceptable' or 'exceptional' range, because they are competing against specific, observable, attainable standards rather than against each other (Allen, 2004).

References

